Chapter-12: Vectors in a Plame

238. Position vector of P is a and Q is b

 $\overrightarrow{PO} = what?$

- (a) a b
- (b) a + b
- © b a
- (d) ab O

239. AB intersects in C at m: n ratio, then-

- (a) $\underline{\mathbf{c}} = \frac{\underline{\mathbf{n}}\underline{\mathbf{a}} \underline{\mathbf{m}}\underline{\mathbf{b}}}{\underline{\mathbf{m}} + \underline{\mathbf{n}}}$ (b) $\underline{\mathbf{c}} = \frac{\underline{\mathbf{n}}\underline{\mathbf{a}} \underline{\mathbf{m}}\underline{\mathbf{b}}}{\underline{\mathbf{m}} \underline{\mathbf{n}}}$
- © $\underline{c} = \frac{\underline{na} + \underline{mb}}{\underline{m+n}}$ @ $\underline{c} = \frac{\underline{ma} \underline{mb}}{\underline{m+n}}$ 0

What is the value of OQ in this picture?

- (a) 3b a
- \bigcirc a 3b

241. The position vector of D, E and F according to vector main point is a, b, c DE interesects in F point at 7:3 ratio, externally. $\underline{c} = what?$

- (a) $\frac{7b-3a}{4}$ (b) $\frac{3a-7b}{4}$
- © $\frac{7b+3a}{10}$ @ $\frac{7a-3b}{4}$

242. Which one is scalar quantity?

- (a) Weight
- (b) Force
- © Speed
- Force

243. If vector quantity is multiplied by scalar quantity, the product will be-

- a zero vectorb null vector
- © vector
- d) scalar
- 0

0

0

0

0

244. Which one is vector quantity?

- (a) speed
- (b) volume
- © temperature @ force

245. What type of vector is AA?

- a point vector b unit vector
- © independent vector
- d limited vector

0

0

246. Which vector is parallel to a - 5b?

- © b-5a @ 2a-10b

247. The position vector of A is a and B is b, according to O main point. P intersects AB at 2: 1 ratio. Which one will represent OC?

- (a) $\underline{a} 2\underline{b}$ (b) $2\underline{a} \underline{b}$
- © $\frac{2\underline{a}+\underline{b}}{3}$ @ $\frac{\underline{a}+2\underline{b}}{3}$
- 0

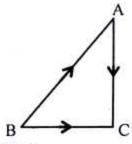
248. The position vector of P and Q is respectively $9\underline{a} - 4\underline{b}$ and $-3\underline{a} - \underline{b}$.

Then PO is-

- (a) 6a 5b
- (b) 12a 3b
- \bigcirc -12a + 3b
- (d) 12a 3b

249. If two non-zero vector is equal, then which one is correct?

- (a) Vectors are non-parallel
- (b) Vectors are parallel
- © Vectors are zero
- d) Vectors are perpendicular


250. v will be the opposite vector of u, if—

- i. $|\mathbf{v}| = |\mathbf{u}|$
- ii. containing line of u and y are paralallel
- iii. u and v are in opposite direction

Which one is correct?

- (a) i & ii
- (b) ii & iii
- © i & iii
- (d) i, ii & iii

0

For AABC-

i.
$$\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC}$$
.

ii.
$$\overrightarrow{BA} + \overrightarrow{AC} = \overrightarrow{BC}$$
.

iii.
$$\overrightarrow{BC} + \overrightarrow{AC} = \overrightarrow{AB}$$
.

Which one is correct?=

- (a) i & ii
- (b) i & iii
- © ii & iii
- (d) i, ii & iii

252. For zero vector-

- we can determine direction
- ii. absolute value is zero
- iii. has no containing line

Which one is correct?

- (a) i
- (b) ii
- © ii & iii
- (d) i, ii & iii

253. For $\underline{\mathbf{u}}$, $\underline{\mathbf{v}}$, $\underline{\mathbf{w}}$ ($\underline{\mathbf{u}}$ + $\underline{\mathbf{v}}$) + $\underline{\mathbf{w}}$ = $\underline{\mathbf{u}}$ + ($\underline{\mathbf{u}}$ + $\underline{\mathbf{w}}$) is-

- law of addition
- ii. law of subtraction
- iii. associate law of addition

Which one is correct?

- (a) i
- (b) ii & iii
- © i&iii
- (d) i, ii & iii

The position vector of A, B is a and b respectively, according to vector main point O. AB is intersected in C at 3: 2 ratio.

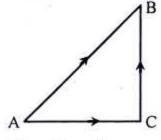
Read the stimuli and answer (254 - 255)

254. What is the position vector of C?

- (a) 3b 2a
- (b) 2a 3b

- 255. \overrightarrow{AC} = what?
 - (a) 3(b a)
 - (b) 3(a-b)
 - \odot 3b a
 - a 3b

Read the stimulus and answer question no. 256 - 258:


The position vector of A, B, C is a, b, c respectively.

256. $\overrightarrow{AB} = \text{what}$?

- (a) $\frac{1}{2}(\underline{a}-\underline{b})$
- (b) $\frac{1}{2}(a+b)$
- © a-b
- d b-a

257. If AB, AC, CB is non-zero vetor. Which one is correct?

0

- (a) $\overrightarrow{AB} \overrightarrow{BC} = \overrightarrow{AC}$
- (b) $\overrightarrow{AC} \overrightarrow{CB} = \overrightarrow{AB}$
- $\overrightarrow{(C)}$ $\overrightarrow{AB} \overrightarrow{AC} = \overrightarrow{CB}$
- (d) $\overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{AC}$

258. If C is the middle point of AB. \underline{c} = what?

- (a) $\frac{1}{2}(\underline{b} \underline{a})$ (b) $-\frac{1}{2}(\underline{b} \underline{a})$
- © $\frac{1}{2}(\underline{a} \underline{b})$ $\frac{1}{2}(\underline{a} + \underline{b})$